

热成像轻松学 故障排查 设备巡点检 精益管理

福禄克测试仪器(上海)有限公司

海因法则

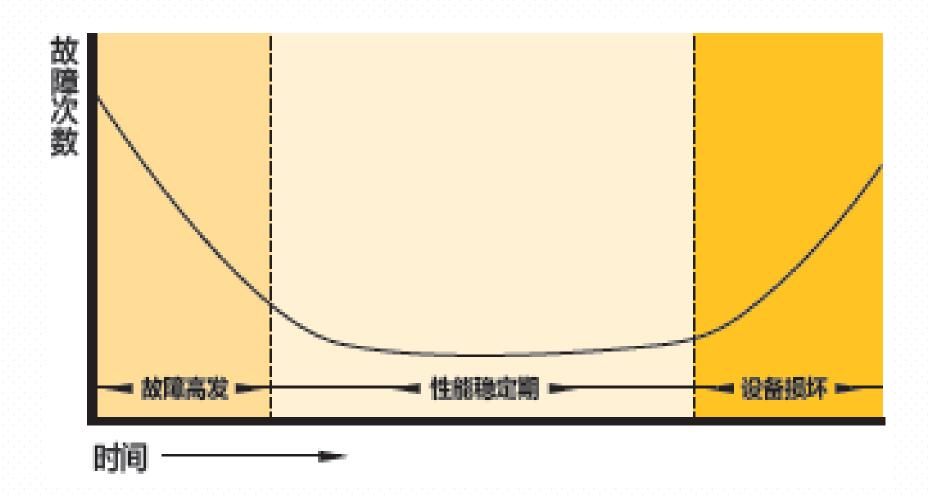
每起重大事故,是由无数个隐患引起的!!!

目前参与设备安全管理的主要工具

因设备数量巨大,发生故障的原因众多,所以需要大量有针对性的检测工具。如:

- 万用表 检测电压、电流、电阻等
- 红外测温仪 检测设备的温度情况
- •压力表/压力校验仪 检测管道、罐体等设备的压力状态
- 振动测试仪 检测电机/泵的运行状态
- 电能质量分析仪 检测供电质量(相位、三相不平衡等)
- •流量计-检测原料和产品的输送流量
- 绝缘电阻测试仪 检测需要绝缘的电气部件
- 钳表 检测大电流

.



设备故障概率曲线

主要的设备维护方法

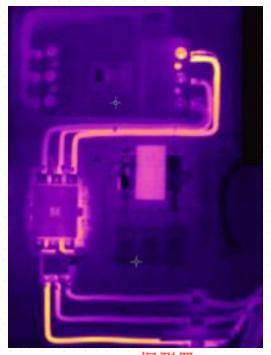
	反应性维护	预防性维护	PdM 预测性维护
日常检 查周期	无明确的检查周期	定期检修	定期测量设备的状态数据
维修更 换依据	"不出故障就不维修"	历史统计数据- 企业或设备的平均无故障时 间	随时跟踪测量结果,判断设备异常,在故障发生前进行 检修
直接成本	突发性的维修和替换零部 件	周期性的维修和替换零部件	对接近使用寿命的零部件进 行维修或替换
间接成本	高备件库存; 非计划停机的产能损失; 交付违约的赔偿; 企业的商誉损失;	高频率的周期性的停产成本	无计划停机和检修停机的总时间最短; 综合维护成本最低;
潜在风险	操作人员伤亡; 以包含潜在故障的设备进 行生产而造成系统性质量 问题;	未按照设备的实际健康状况维护, "维护不足"与"过度维护"并存 1.存在大量浪费; 2.仍不能杜绝突发性停工	并非所有设备都有可供实时 监测、并作为问题依据的状 态参数

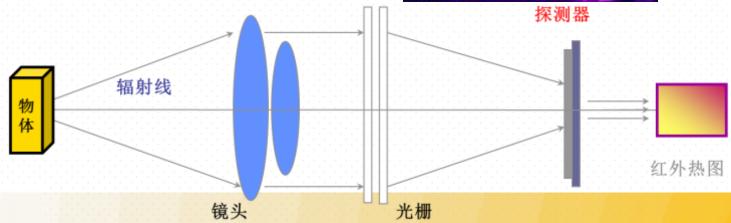
时至今日, 红外热成像已成为业界公认的最为行之有效的预测性维护(PdM)技术

Fluke提供全面解决方案

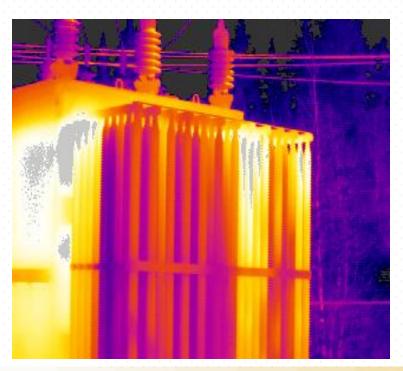
红外热像原理

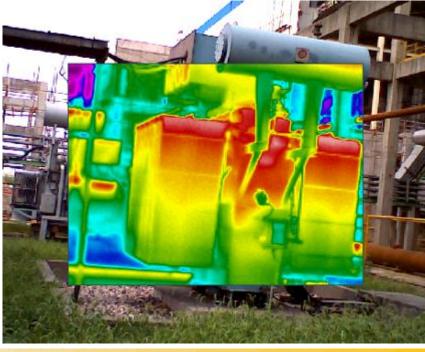
自然界任何物体,只要温度高于绝对零度(-273.15 °C),就会以电磁辐射的形式在以电磁辐射的形式在非常宽的波长范围,发射能量,产生红外辐射。



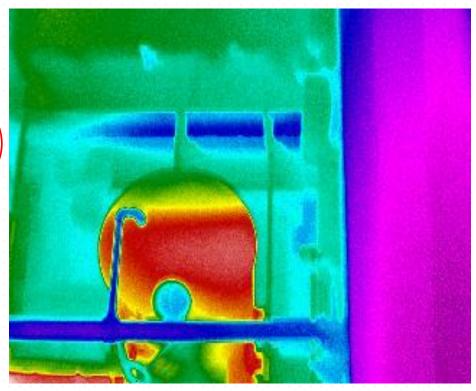


什么是红外热像?

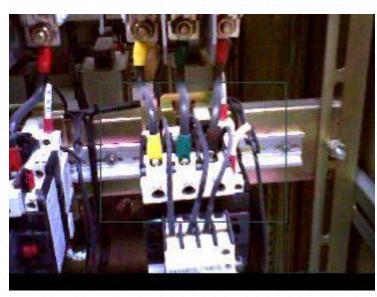

热像仪可以干什么?

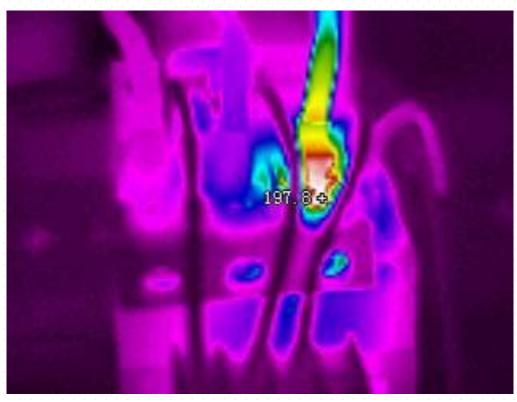

SOLUTION

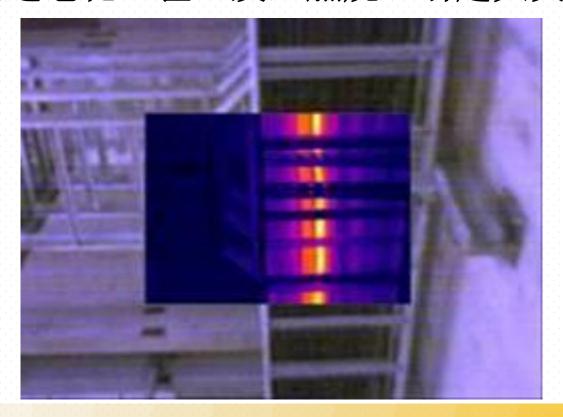
• 随着设备温度的升高,冷却循环受阻的部位由于过热而导致故障发生。



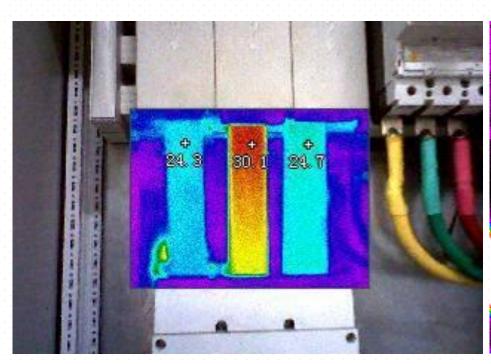
变压器油枕

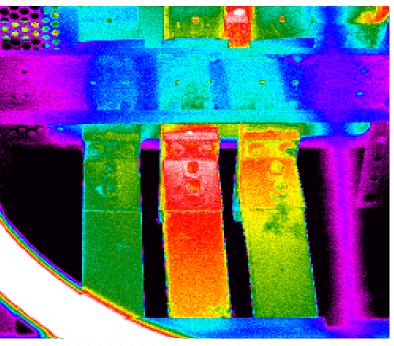

- 油枕也是经常进行巡检的设备。
- 一般来说,油枕的油位在1/2-2/3处。




•接头长期处于高温状态,会导致绝缘下降或引发电气火灾。

导线中通过的电流量超过安全电流值,通过电流量越大,发热量就越大,导线绝缘层温度就越高,绝缘层加速老化,甚至发生燃烧,引起火灾事故。



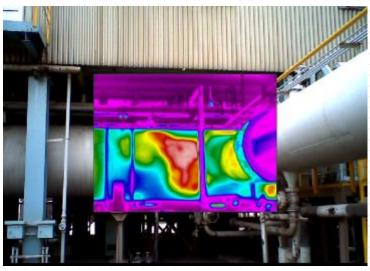


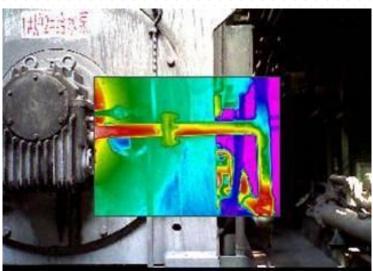
三相接线排

FLUKE .

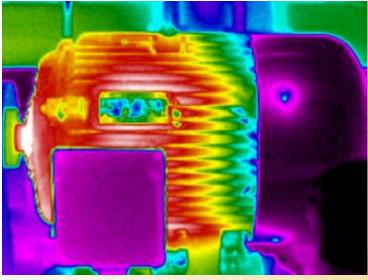
- •接触点问题
- 电能质量问题

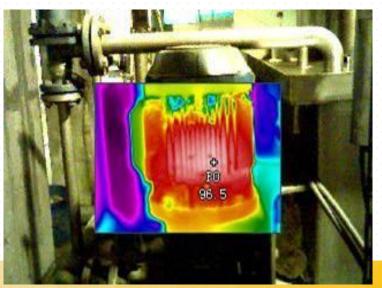
DL/T664-2008《带电设备红外诊断应用规范》 GB763-90《交流高压电器在长期工作时的发热》


- 危急热缺陷(I): 电气设备表面温度超过90℃, 或温升超过75℃或相对温差(温差)超过55℃
- 严重热缺陷(II): 电气设备表面温度超过75℃,或温升超过65℃或相对温差(温差)超过50℃
- 一般热缺陷(III): 电气设备表面温度超过60℃,或温升超过30℃或相对温差(温差)超过25℃
- 热隐患(IV): 电气设备表面温度超过50℃, 或相对温差(温差)超过20℃

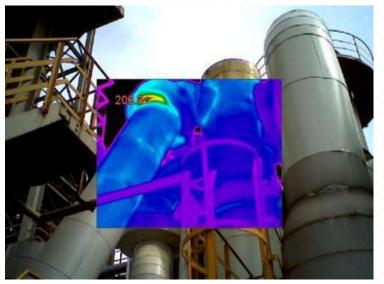


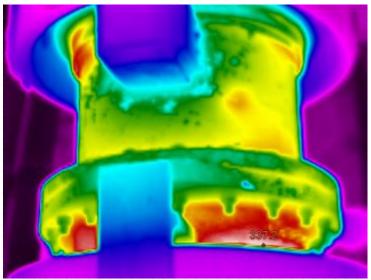
管道与电机


管道 管壁 减薄



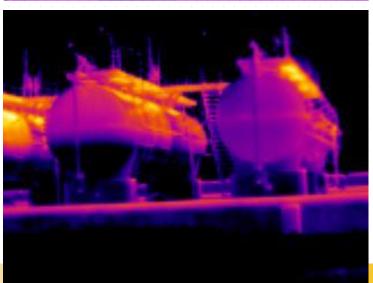
管道 堵塞



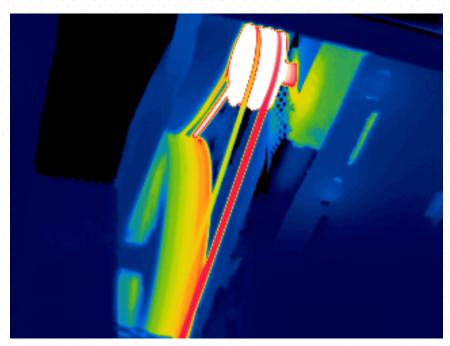


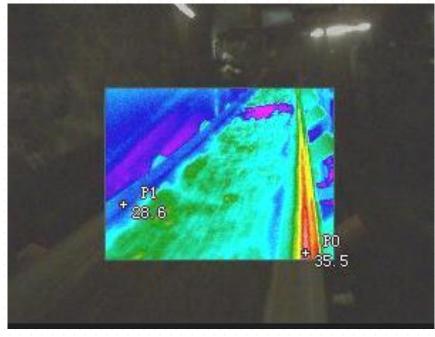
电机 老化 过热

反应 器损坏



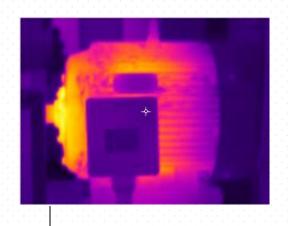
加炉火损热耐砖坏

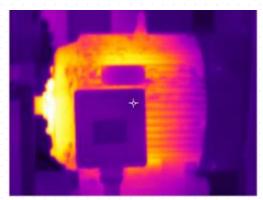


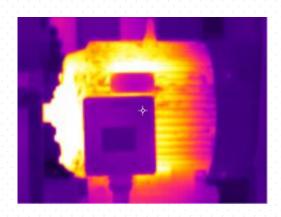


液化气罐液位

• 橡胶制的皮带与传送带发生过热后会导致加速老化,造成断裂。






多种检测方式合作-电机的案例

设备故障

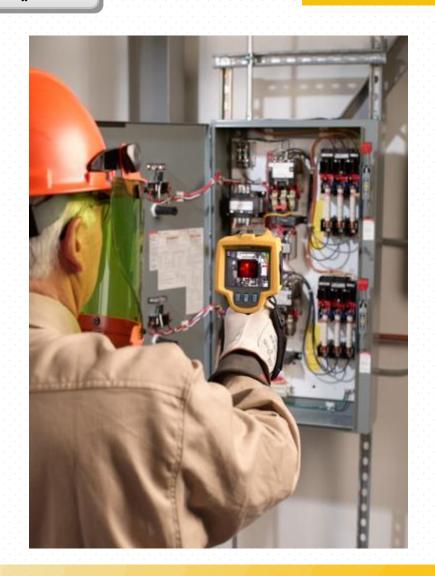
→ 红外图像

电流,电压,功率、电能参数

→ 振动参数

时间2

时间3


时间 1

FLUKE .

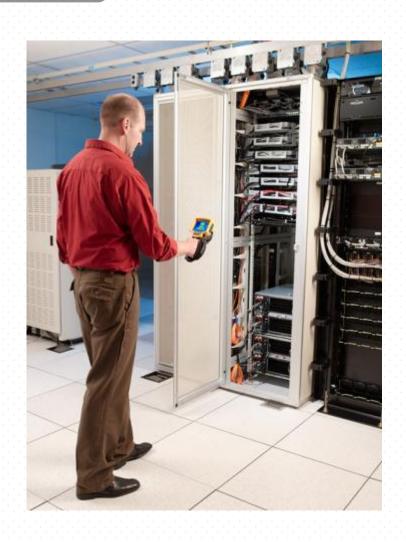
如何有效开展设备预测性维护?

- 1、建立关键设备清单
 - ① 电气系统
 - 变压器
 - 电缆/电线
 - 开关
 - 断路器
 - 接地系统
 - 熔断器
 - 电容器
 - 电气接头
 - 电抗器

FLUKE .

如何有效开展设备预测性维护?

- 1、建立关键设备清单
 - ① 电气系统
 - ② 旋转式机器/负载
 - 马达
 - 发电机
 - 泵
 - 空调
 - 风扇
 - 变速箱
 - 冷却器
 - ___



如何有效开展设备预测性维护?

- 1、建立关键设备清单
 - ① 电气系统
 - ② 旋转式机器/负载
 - ③ 照明系统
 - ④ 应急系统
 - UPS
 - 发电机
 - 切换开关
 - -

如何有效开展设备预测性维护?

- 1. 建立关键设备清单
 - ① 电气系统
 - ② 旋转式机器/负载
 - ③ 照明系统
 - ④ 应急系统
 - ⑤ 机械设备
 - 管路
 - 阀门
 - 储罐
 - 加热系统内衬
 - ----------

如何有效开展设备预测性维护?

- 1. 建立关键设备清单
- 2. 针对各种不同设备类型的制定预测性维护程序
 - ① 测试频率
 - ② 测试顺序
 - ③ 测试方法

设备类型	两次检查期间的最大时间差				
变压器	2 个月				
440 V马达控制中心					
有空调	1-2个月				
无空调或较老	0.5-1个月				
配电设备	1-2周				
大型马达	1个月				
较小的马达	1-2个月				

设备预测性维护计划 - 点检

序号	30 de de She	设备代码	区域	2011年									dent			
	设备名称			1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	备注
	配电系统															
1	紧急发电机	MC-001	XXX						1						1	
	高压配电室	MC-002	XXX					1								关键
2	-三相母排	MC-002-01	XXX					1								关锁
	-变压器	MC-002-02	XXX					1								关键
	低压配电室	MC-003	XXX	1		1		4		1		1		1		关键
3	-接线端子	MC-003-01	XXX	1		1		4		1		1		1		关键
	-斯路器	MC-003-02	XXX	1		1		4		1		1		1		关键
4	电容补偿柜	MC-004	XXX	1		1		4		1		1		1		美報
6	不何斯电源	MC-005	XXX				1						1			关键
7	电梯	MC-006	XXX	1				1			1				1	
8	照明	MC-007	XXX		1			1			1			1		
	水处理系统															
9	储水罐	WS-001	XXX					1					1			关键
10	供水泵	WS-002	XXX	1						1						
	HVAC															
12	空调	HV-001	XXX	1			1			1			-1			关键
13	回风机	HV-002	XXX					1						1		美報
15	抽风机	HV-003	XXX											1		关键
16	冷冻机	HV-004	XXX		1			2			1			1		美額
	压缩空气系统															
18	空压机	CA-001	XXX		1			1			1			1		美報
19	干燥机	CA-002	XXX			1			1			1			1	美
	热水系统															
20	热水锅炉	BO-001	XXX	1	1	1	1	3	1	1	1	1	1	1	1	关键
21	燃油供给泵	BO-002	XXX							1						
22	热水泵	BO-003	XXX	1						1						
23	蒸汽凝水泵	BO-004	XXX	1				1				1				

设备预测性维护 - 巡检表

 红外检查位置表

 标题: XX商业中心 - 电气设施巡检看板

 负责部门:
 联系方式
 操作人
 值班主管

 检测条件
 环境温度
 天气

巡检需求概述:

检查总结:

No.	设备安装	具体位	设备名称	设备编号	设备	关键检	正常值	实际/异	对应热	4
	地点	置			类型	查点	范围	常值	图编号	注
1	地下室	发电机	紧急发电机	MC-001	xxx	<u> </u>				
		房								
2	地下室	高压配	高压配电室	MC-002	XXX	关键				
		电室	-三相母排	MC-002-01	XXX	关键				
			-变压器	MC-002-02	XXX	关键				
3	商场一楼	低压配	低压配电室	MC-003	XXX	关键				
		电室	-接线端子	MC-003-01	XXX	关键				
			-断路器	MC-003-02	XXX	关键				
4	商场一楼		电容补偿柜	MC-004	XXX	关键				
6	商场一楼		不间断电源	MC-005	XXX	关键				
7	商场一楼		电梯	MC-006	XXX					
8	商场一楼		照明	MC-007	XXX	<u>-</u>				

预测性维护步骤总结

- 建立关键设备清单
- 针对各种不同设备类型的制定预测性维护程序
 - 测试频率
 - 测试顺序
 - 测试方法
- 利用相应设备,记录测量数据
- 对比分析测量数据,发现异常 情况
- 在发生故障安排计划前进行维 修和维护

Ti+VT02 = 全面的PDM解决方案

雪鉴 精准专业 彰显权威

易见 易用 耐用 优化功能

VT02 经济简便规范管理

谢谢!

