基于椭圆 IIR 滤波器组小波包分析的功率测量方法*

海瑛 陈敬虞 钱苏翔 张伟

(嘉兴学院 机电工程分院 浙江 嘉兴314001)

摘要:小波包分析可以实现信号频带的均匀划分,为电压、电流有效值及有功功率高精度的测量提供了理论依据,但其复杂的计算使它在实时测量中受到了限制。本文提出了将椭圆半带 IIR 滤波器应用于小波包分析的功率测量新方法,通过研究表明,该方法可以将复杂的计算减少到与快速傅立叶变换(FFT)同等数量级上。仿真和 实验结果进一步验证了该方法的可行性。

关键词 小波包分析 椭圆半带滤波器组 功率测量 有效值(RMS)测量 中图分类号 :TM76 文献标识码 :A

文章编号:1001-1390(2009)06-0009-04

Power Measurement Method Based on Wavelet Packet Analysis Using Elliptic IIR Filters

HAI Ying, CHEN Jing-yu, QIAN Su-xiang, ZHANG Wei (School of Mechanical Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, hina)

Abstract The Wavelet packet analysis can uniformly divide frequency band of signals, and provide the theoretical basis for accurate measurement of RMS and power, but the computational complexity of Wavelet packet analysis limits its use in real-time metering. This paper presents a new method using all-pass implemented special half-band elliptic infinite-impulse-response filters in the Wavelet packet analysis of power measurement. The study reveals that the proposed implementation can reduce the computational complexity to levels comparable to FFT. Reality of the proposed implementation is evaluated by results of simulation and tests.

Key words :Wavelet packet analysis, Elliptic half-band filters, power measurement, RMS measurement

0 引 言

目前,快速傅立叶变换(FFT)是电力系统谐波分 析和功率计算的主要工具,其优点是计算的复杂度 低,适合于平稳信号的分析和检测。而小波变换(WT) 因具有良好的时频效应,非常适合瞬态信号或突变信 号的分析和检测。但基于离散小波变换(Discrete Wavelet Transform, DWT)的谐波分析也存在信号频 带划分不均匀的特点,不利于准确判断信号所含有的 各次谐波情况。基于小波包变换(Wavelet Packet Transform, WPT)的谐波分析算法,能实现频带的均匀 划分,从而最大程度地减少谐波泄漏。所以,小波包变 换在电能质量监测等领域得到了广泛的关注和研究。 首先,在Weon-Ki Yoon 采用第一代小波变换功率测 量 算法 [1] 的基础上,Hamid 和 Kawasali 使用 Vaidyanahan 滤波器的小波包变换实现了电压有效值 和功率的测量^[2]。Domijan 等提出了基于全通滤波器 组的小波包分析进行实时谐波的测量方法^{[3][4]}。但在实 时谐波的测量中 随着小波包分解树内结点个数的增 加 其小波包系数运算量也会很大;即小波包分析需 要比小波分析算法更多的乘法和加法运算[5]。所以, 小波包分析在实时性要求较高的功率测量中,其实际 应用受到了一定的限制。考虑到滤波器系数的数目与 计算复杂度(或乘法运算量)的紧密关系,本文提出了 一种基于椭圆半带 IIR 滤波器组的小波包分析方法, 可实现电压、电流有效值和功率分频带的测量。为准 确、快速的功率测量提供了新的理论依据以及实际的 实现方法。

- 1 小波包变换
- 1.1 小波包分析

小波包变换实际上是将信号通过一系列的带通

^{*} 国家自然科学基金资助项目(50575095); 浙江省嘉兴市科技局基金资助项目(SA2008BY2002)

滤波器,对高频和低频频带做二进制划分,最后整个 频带都被划分为均匀的频带,它克服了小波变换对高 频信号频率分辨率低的缺陷。小波包分析可以实现对 信号更加精细的分析,如图1描述了用于分析的定长 带宽分解和重构的滤波器组及小波包分解树结点与 信号子空间频带的对应关系。谐波信号x(n)(或用小波系数 d⁰,表示)通过低通滤波器H(z)和高通滤波器<math>G(z)进行尺度 j = 2的小波包分解,信号频带则被均 匀分成 2^{j} 个频带,由图中频带排列规则可知,第 *j* 尺 度的 *i* 结点,如结点[2,3]对应频带为 300~400Hz。

图 1 小波包分析的 Mallat 分解算法

Fig. 1 Mallat decomposition algorithm of Wavelet packet analysis

1.2 基于小波包变换的分频带有效值与功率测量

(1)各参数有效值和功率的定义:

$$I_{\rm rms} = \sqrt{\frac{1}{T}} \int_{0}^{T} i(t)^{2} dt \quad V_{\rm rms} = \sqrt{\frac{1}{T}} \int_{0}^{T} v(t)^{2} dt$$
$$P = \frac{1}{T} \int_{0}^{T} i(t)v(t) dt \tag{1}$$

式中 *i*(*t*)和 *v*(*t*)是以 *T* 为周期的电流和电压信号。 (2)小波包变换 RMS 计算

基于小波包变换的 *i*(*t*)、*v*(*t*)有效值如下:

$$V_{\rm rms} = \sqrt{\frac{1}{T} \int_{0}^{T} v(t)^{2} dt} \approx \sqrt{\frac{1}{2} \sum_{n=0}^{N-1} i(n)^{2}}$$
(2)

$$\approx \sqrt{\frac{1}{2^{N}} \sum_{i=0}^{2^{N-1}} \sum_{k=0}^{2^{N-1}-1} (d_{j}^{i}(k))^{2}} = \sqrt{\sum_{i=0}^{2^{l-1}} (I_{j}^{i})^{2}}$$

$$V_{\rm rms} = \sqrt{\frac{1}{T} \int_{0}^{T} v(t)^{2} dt} \approx \sqrt{\frac{1}{2^{N}} \sum_{n=0}^{2^{N-1}} v(n)^{2}}$$

$$\approx \sqrt{\frac{1}{2^{N}} \sum_{i=0}^{2^{l-1}} \sum_{k=0}^{2^{N-1}-1} (d_{j}^{*i}(k))^{2}} = \sqrt{\sum_{i=0}^{2^{l-1}-1} (V_{j}^{i})^{2}}$$
(3)

如果 *i*(*t*)和 *v*(*t*)是以 *T* 为周期的周期波 ,则功率为:

$$P = \frac{1}{T} \int i(t)v(t) dt \approx \frac{1}{2^{N}} \sum_{n=0}^{2^{N}-1} i(n)v(n)$$
$$\approx \frac{1}{2^{N}} \sum_{i=0}^{2^{N}-1} \sum_{k=0}^{2^{N-1}-1} d_{j}^{i}(k) d_{j}^{*i}(k) = \sum_{i=0}^{2^{L}-1} P_{j}^{i}$$
(4)

式中 $\{I_{j}^{i}\}$ 、 $\{V_{j}^{i}\}$ 是各频段在结点的均方根值, $\{P_{j}^{i}\}$ 是 各频带在结点 *i* 对应的功率^[2]。

2 基于 IIR 椭圆半带滤波器组的小波包分析

2.1 小波包分析与滤波器组

在实时的谐波测量中,由于小波包分析中的滤波 器系数过多,使WPD的应用受到了一定的限制。所以 小波滤波器的选择需慎重考虑。目前,基于半带滤波器 的双通道完全重构滤波器组在小波基设计中得到了重 要应用⁶⁰,其描述如图2所示。输入信号x(n)由开关控 制分解成奇数序列和偶数序列(即对信号进行2分样), 分样信号被送到滤波器组中进行分析计算,这种方案 的计算量近似为常规滤波器计算量的1/8。

同样,对于完全的小波分析,任一离散信号被 2^N 小波基分解,需要 2^{N+1}-2 次的滤波操作,即快速滤波 器算法的复杂度随 WPT 二元小波分析的应用而有效 增长。所以快速滤波算法中的实际滤波器类型,决定 了每次滤波操作中乘法运算的数目,说明滤波器组的 优化设计是减少 WPD 运算量的关键所在。

2.2 椭圆IIR滤波器组的设计

数字的巴特沃斯、切比雪夫、椭圆滤波器,可通过 同类模拟滤波器的线性变换得到,能够用来设计由全 通滤波器组成的双通道滤波器组。两种稳定的全通滤 波器以并联的方式设计 IIR 低通和高通滤波器。其 中,文献[7][8]给出了特殊半带椭圆滤波器的设计方 案,将其应用于 IIR 滤波器组,即得全通滤波器表达 式如下:

$$E_0(z^2) = \prod_{i=1}^{J} \frac{\alpha_{0i} z^2 + 1}{z^2 + \alpha_{0i}}$$
(5)

$$E_{1}(z^{2}) = \prod_{i=1}^{J} \frac{\alpha_{1i} z^{2} + 1}{Z^{2} + \alpha_{1i}}$$
(6)

按椭圆(elliptic)滤波器设计方法,得到:

$$\alpha_i = \frac{1 - \cos\theta_i}{1 + \cos\theta_i} \tag{7}$$

式中当 $\alpha_i < 1$ 时 $\alpha_{\alpha} = \alpha_i$;当 $\alpha_i > 1$ 时 $\alpha_{1i} = 1/\alpha_i$,且

$$\cos\theta_{i} = \frac{(-1)^{i+1}r_{i}}{1+\Omega_{i}^{2}}$$
(8)

 $r_{i} = \left[(1 - k \Omega_{i}^{2}) (1 - \Omega_{i}^{2} / k) \right]^{1/2}$ (9)

式中 Ω_i 为模拟的角频率;k为选择性参数。

2.3 滤波器的选择

最佳滤波器的选择,可以通过对不同的 FIR 和 IIR 滤波器组的计算复杂度、频率响应以及其他特性 进行研究比较得到。

(1)滤波器组计算复杂度的比较。

不同滤波器组计算的复杂度,可以通过分析它所 需要的乘法器数目加以比较。在一个周期内,采样128 个点数据,通过计算可确定出所需要乘法器的数目。 比较结果如表1所示,数据表明巴特沃思IIR (Butterworth IIR 简写为 BW IIR)和椭圆IIR(Elliptic IIR 简写为 Ellip IIR)滤波器需要的乘法器数目比 FIR 滤波器的少^[7]。

表1使用WPT的不同滤波器的计算复杂度

Tab.1 Computational complexity of various filter

used in WPT						
滤波器类型	系数	滤波器数	乘法数			
Beylkin FIR	18	2	23040			
Vaidy an athan FIR	24	2	30720			
Db FIR(db9)	18	2	23040			
Butterworth IIR $L=4$	3	2	1960			
Elliptic IIR $L=3$	-	2	1 600			
FFT	-	2	1792			

(2)滤波器频率响应特性比较

滤波器选择的另一个重要依据是幅频响应或滚 降特性。如 对于低通的半带滤波器 ,巴特沃思(BW) IIR (*L*=6)、Vaidyanathan (Vaid) FIR、Beylkin FIR 及 Daubechies(Db)滤波器的频率响应如图 3 所示。说明 巴特沃思 IIR 滤波器的幅频响应更趋近于理想情况。 巴特沃思(*L*=6)和椭圆的(*L*=3)半带滤波器幅频响应 特性或滚降如图 4 所示。

将 IIR 椭圆半带滤波器组与有限冲击响应(FIR)

滤波器如 Dubechies、Beylkin 及 Vaidyanathan 进行比 较,结果表明,椭圆半带 IIR 滤波器组具有乘法系数 少,计算复杂度低的优点。因此,借助于椭圆半带 IIR 滤波器组的小波包分析,能将复杂的计算减少到与快 速傅立叶变换(FFT)同等数量级上,可用来完成对电 力系统电压、电流有效值及功率等参数实时计算和测 量的任务。

Fig.3 Rolloff characteristics of BW IIR and various FIR filter

图 4 椭圆和巴特沃思 IIR 滤波器幅频响应 Fig.4 Rolloff characteristics of BW IIR and

various FIR filter

3 仿真信号的 RMS 和功率计算

仿真实验的基波频率为 50Hz,采样频率 6400Hz, 即每个周期采 128 个点的数据。作 5 层小波包分解, 分析的频带为 0~3200Hz, 整个频带划分为 32 个子 带。

设输入的仿真信号 v(t),i(t)含有 1、3、5、7、9、11 和 13 次的谐波,如式(10)、(11):

 $v (t) = \sqrt{2} \times [\sin (2\pi \cdot 50t + 60^\circ) + 0.2\sin (2\pi \cdot 150t) + 0.2\sin (2\pi \cdot 250t + 150^\circ) + 0.1\sin (2\pi \cdot 350t) + 0.08\sin (2\pi \cdot 350t) + 0.08it) + 0.08it)$

表 2 基于椭圆 IIR 滤波器组 WPT 的分频带 RMS 和功率测试

Tab.2 Voltage /current rms values and power measurement via WPT using Ellip IIR filter

结点	频带/Hz	谐波	理论值			实测值		
		次数	$U_{\rm rms}N$	I _{rms} /A	P/W	$U_{\rm rms}$ /V	I _{ms} /A	<i>P</i> /W
0	0~100	1	1.0000	1.0000	0.9848	1.0000	1.0000	0.9848
1	100~200	3	0.2000	0.1000	0.0193	0.2003	0.1000	0.0193
2	200~300	5	0.2000	0.0800	0.0138	0.1994	0.0797	0.0138
3	300~400	7	0.1002	0.0811	0.0081	0.1000	0.0800	0.0080
4	400~500	9	0.0800	0.0900	0.0067	0.0769	0.0891	0.0066
5	500~600	11	0.1000	0.0700	0.0070	0.0988	0.0690	0.0069
6	600~700	13	0.1000	0.0800	0.0040	0.1001	0.0799	0.0040
7	700~800	15	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000
	总值		1.0566	1.0209	1.0436	1.0566	1.0209	1.0435

表 3 基于椭圆 IIR 滤波器组的 WPT 实验结果

Tab.3 The test results via WPT using Ellip IIR filter

结点	频带/Hz	谐波	FFT			WPT (椭圆IIR), L=3		
		次数	$U_{\rm rms}N$	I _{rms} /A	P/W	$U_{\rm rms}$ /V	I _{mb} /A	P/W
1	0~100	1	33.487	122.058	2043.678	33.487	1 22.059	2043.695
2	100~200	5	1.574	21.360	-16.864	1.576	21.368	-16.838
3	200~300	7	0.197	13.426	-1.322	0.198	13.428	-1.329
4	300~400	11	0.358	5.493	0.983	0.359	5.498	0.987
5	400~500	13	0.129	3.539	-0.228	0.131	3.491	0.229
6	500~600	17	0.104	1.831	-0.095	0.106	1.835	-0.097
7	600~700	19	0.090	1.221	-0.055	0.090	1.231	-0.055
8	700~800	23	0.001	1.099	0.0005	0.001	1.110	0.005
	总值		33.527	124.835	2026.606	33.529	124.837	2026.591

 $450t+40^{\circ}+0.1\sin(2\pi\cdot550t)+0.1\sin(2\pi\cdot650t+60^{\circ})$] (10)

 $i (t) = \sqrt{2} \times [\sin (2\pi \cdot 50t) + 0.1\sin (2\pi \cdot 150t - 15^{\circ}) + 0.08\sin(2\pi \cdot 250t + 120^{\circ}) + 0.08\sin(2\pi \cdot 350t) + 0.09\sin(2\pi \cdot 450t + 20^{\circ}) + 0.07\sin(2\pi \cdot 550t) + 0.08\sin(2\pi 650t)]$ (11)

仿真信号各频带(包括谐波)的有效值,利用基于 椭圆 IIR 滤波器组的小波包分析方法(*L*=3)进行计算 后的结果见表 2^[9]。结果验证了基于椭圆 IIR 滤波器 组的小波包算法在有功功率等测量中的合理性与准 确性。

4 实际信号的功率测量

为了进一步验证基于椭圆 IIR 滤波器组的小波 包功率算法对实际信号的测量准确度 本文选取投运 在功率为 400kW 小水电发电机组中整流变压器 (嘉 兴特种变压器厂生产)的阀侧信号进行测量计算。其 基频为 50Hz,本实验采样频率为 6400Hz,这些功率 的测量均在周期信号是稳定的情况下进行的。经过测 算,基于椭圆的 IIR 滤波器(*L*=3)的小波包分析方法 和 FFT 算法的各频带电压电流的均方根值及功率值 如表 3 所示。表明 FFT 和特殊的 IIR 小波包分析法 (*L*=3)的结果很相近。

5 结 论

本研究中,將基于椭圆半带 IIR 滤波器实现的全 通多相滤波器组与常用的 FIR 滤波器、巴特沃思 IIR 滤波器以及 Dubechies ,Beykin 和 Vaidyanathan FIR 滤波器进行了比较,在分析了所需要的乘法器数目和 不同滤波器响应阶数后,证明了基于椭圆半带 IIR 滤 波器的 WPT 分析方法优越的计算性能。

通过仿真和实验的结果表明,新的 WPT 分析方 法即克服了小波包分析运算量大的缺(下转第 25 页)

- 12 -

时的正、反变换过电压小得多。

(3)这种新型防雷变压器主要有铁芯、线圈、滤波 网络和屏蔽层等部分 扼流线圈两端与滤波网络两端 并联 滤波网络一端接地 ,初级线圈与次级线圈之间 有屏蔽层。通过对雷电波的全负反射消除雷电波的入 侵 ,解决了避雷器短路所引起的故障。

参考文献

[1] 解广润.电力系统过电压[M].北京 水利电力出版社 ,1985.

[2]田树军.高效防雷变压器暂态过程的仿真[D].南宁 广西大学 2004.
[3] Guido Ala, Maria Luisa, Di Silvestre. A simulation model for electromagnetic transients in lightning protection systems [J].IEEE transactions on electromagnetic compatibility 2002 *A*4(4) 539-554.

[4] 罗仕乾.雷电波的频谱及能量分析[J].高电压技术,1995 21(1) 85-86.

Luo Shiqian.The spectrum and distribution of lightning wave [J].High Voltage Engineering ,1995 21(1) 85-86.

[5] 丁美新 李慧峰 朱子述 ,等.雷电流波形的数学模型及频谱仿真[J]. 高电压技术 ,2002,28(6) 8-10.

Ding Meixin Li Huifeng Zhu Zishu et al. The mathematical model and frequency spectrum simulation of lightning current [J]. High Voltage Engineering 2002 28(6) 8-10.

[6] 董万胜,刘欣生,张义军,等.25~100MHz 频段闪电脉冲辐射能量频 谱特征[J].中国电机工程学报,2003,23(3):104-107.

(上接第12页)

点,又具有分析精度高的优点,所以可提高基波和谐 波功率测量实时性,具有重要的实际应用价值。

参考文献

 Weon-Ki Yoon, Michael J. Devaney. Power Measurement Using the Wavelet Transform [J]. IEEE Transactions on Instrumentation Measurement, 1998, 47(5):1205–1210.

[2] E.Y. Hamid and Z. Kawasaki, Wavelet packet transform for rms values and power measurements [J]. IEEE Power Engineering Review, 2001,21 (9):49–51.

[3] A. Domijan, A. Hari and T. Lin. On the selection of appropriate filter bank for power quality monitoring [J]. IASTED International Conference Power Con, New York, USA, 2003 ,10(12):17–21.

[4] Julio Barros and Ramón I. Diego. Analysis of Harmonics in Power Systems Using the Wavelet Packet Transform [J]. IEEE Instrumentation and Measurement Technology Conference. 2002,5(1):1484–1488.

[5] 扬力华等译.信号处理的小波导引[M].北京 机械工业出版社 2002.

[6] Vaidyanathan P P. Multi-rate Systems and Filter Banks [M].New

Dong Wansheng Liu Xinsheng Zhang Yijun et al.Lightning electromagnetic radiation field spectra in the interval from 25 to 100 MHz [J].Proceedings of the CSEE 2003 23(3) :104–107.

[7] 王巨丰.高效防雷变压器[P].中国专利 ZL 01.276628.3, 2002-11-27.

[8] 王雪,王增平. 变压器内部故障仿真模型的设计 [J]. 电网技术, 2004 28(12) 50-52.

Wang Xue ,Wang Zengping.Study of simulation of transformer with internal faults[J].Power System Technology 2004 28(12) 50-52.

[9] 陈香辉,王赞基.电力变压器冲击试验故障定位的频域仿真方法[J]. 变压器 2000 37(8) 27-32.

Chen Xianghui ,Wang Zanji.A novel simulation method in frequency domain for locating faults in power transformer windings under impulse voltage test[J].Transformer ,2000 ,37(8) 27–32.

[10] 卡兰塔洛夫 采伊特林(苏).电感计算手册[M].北京 机械工业出版 社 ,1992.

作者简介:

王巨丰(1956-),男,工学博士,教授,从事现代防雷技术的研究。

Email wangjufeng56@163.com

陆俊杰 (1983-),男,硕士研究生,从事区域电力系统的运行研究。 Email ahjun291@163.com

陈宙平(1983-) ,男 硕士研究生 从事现代防雷技术的研究。

收稿日期 2008-12-04 (田春雨 编发)

Jersey: Prentice Hall, Englewood Cliffs, 1993.

 [7] R. Ansari .Elliptic design for a class of generalized half-band filter
 [J].IEEE Transactions on Acoustics . Speech and Signal Processing. 1985,10(4):1146–1150.

[8] 郭云, 刘鹏程等. 一类椭圆数字滤波器的全新设计方法 [J]. 电子测量与仪器学报, 1995, 9(2): 9-14.

[9] 胡昌华等. 基于 MATLAB 的系统分析与设计——小波分析 [M].西 安 :西安电子科技大学出版社 2004.

作者简介:

海瑛(1965-),女,汉族,宁夏中宁人,硕士,副教授,研究方向为信号分 析及处理, 电气测量, 变压器的状态监测等。

Email haiying@mail.zjxu.edu.cn

陈敬虞(1964-) 男 汉族 博士 副教授 研究方向为有限元分析理论 与应用 小波分析及应用等。

钱苏翔(1963-),男,汉族,硕士,教授,研究方向机电设备及变压器的 状态监测与故障诊断技术。

> 收稿日期 2009-01-06 (常会敏 编发)