%

某低品位钨钼矿选矿试验研究

杜淑华、 廖 力、胡劲松、王 勇 (安徽省地质实验研究所, 合肥 230001)

摘 要:某低品位钨钼矿含钨 0.26%,钼 0.022%。为综合回收钨和钼,试验采用先浮硫化矿后浮白钨矿的工艺 流程, 闭路试验获得了钨品位 66.10%、钨回收率 86.74%的钨精矿、钼品位 45.31%、钼回收率 65.78%的钼精矿、取 得了较好的试验效果。

关键词:钨钼矿:浮选:综合回收:回收率

文章编号: 1671-9492(2009)02-0014-04 中图分类号: TD954 文献标识码: A

回收白钨矿的主要选矿方法是浮选。一般情况 下, 当脉石以硅酸盐矿物或石英为主时的白钨矿石 较容易分选。当白钨矿与碳酸盐矿物、萤石、重晶 石等的一种或多种矿物共生时,由于矿物的可浮性 相近, 浮选工艺相对较难、较复杂。白钨浮选工艺 一般分粗选和精选。粗选以淘汰脉石矿物为目的, 从而提高粗选富集比,精选是白钨矿浮选获得合格 精矿的关键,核心是强化对脉石矿物的抑制能力。 常用的工艺有"彼得洛夫法"和 731 氧化石蜡皂常 温浮选法 [1]。

某低品位钨钼矿属矽卡岩型,主要金属矿物为 白钨矿、辉钼矿, 主要脉石矿物为石榴石、透辉 石、石英、钾长石、碳酸盐等。原矿 WO、品位为 0.26%, 钼品位为 0.022%。为综合回收钨和钼, 对 该矿进行了详细的选矿试验研究。

根据该矿石的特点,进行先浮硫化矿后浮白钨 矿的试验研究,该工艺获得了较好的技术指标,闭 路试验获得的选矿指标为: 钨品位 66.10%、钨回 收率 86.74%的钨精矿、钼品位 45.31%、钼回收率 65.78%的钼精矿。

1 矿石性质

1.1 矿石主要化学成分分析及物相分析

矿石主要化学成分分析结果见表 1. 钨物相分 析结果见表 2, 钼物相分析结果见表 3。

分析结果表明,有用矿物种类单一,钨以白钨 矿为主, 钼以辉钼矿为主。钨、钼含量虽已达到开 采回收的品位要求,但在同类矿石中属偏低。而其

表 1 矿石主要化学成分分析结果

Table 1 Multi-element analysis of run-of-mine ore % P CaO MgO SiO₂ Al₂O₃

成分 WO₃ Mo 含量 0.26 0.022 0.014 0.026 0.35 0.046 23.83 3.97 50.93 9.09

钨物相分析结果 表 2

Table 2 Analysis results of wolfram phase

钨物相	白钨	钨华	黑钨	总钨
含量	0.23	0.0056	0.024	0.26
分布率	88.46	2.15	9.39	100.0

表 3 钼物相分析结果

Table 3 Analysis results of molybdenum phase

钼物相	辉钼矿	钼华	钼钨钙矿	钼酸钨矿	总钼
含量	0.016	0.0018	0.0009	0.0036	0.022
分布率	72.73	8.18	4.09	16.36	100.0

它有价元素均未达到综合回收的品位要求。由于钼 品位低,可能影响浮选回收率的提高。

1.2 主要矿物的嵌布特征

白钨矿: 矿石中最主要的金属矿物, 也是最主 要的回收对象。呈自形-半自形粒状、团粒状、细 脉状不均匀嵌布, 矿床中白钨矿以细粒为主。粒径 多以 0.1mm 左右为主,个别粗粒可达 2~3mm,其 内包含石榴石、透辉石等。

辉钼矿:辉钼矿为主要有用矿物之一,也是主 要的回收对象。在镜下呈灰白色,浸染状分布于脉 石中, 粒径为 0.10~0.15mm。

黄铁矿: 呈半自形—自形粒状, 粒径为0.03~0.15mm。

收稿日期:2008-11-29

作者简介:杜淑华(1979-),女,工程师,硕士,主要从事选矿及资源综合利用方面的研究。

呈稀疏浸染状分布。

磁黄铁矿:镜下呈淡玫瑰黄色,多为他形粒 状, 粒径为 0.03~0.20mm, 常与黄铜矿共生, 分布 于各种矿石中。

黄铜矿: 镜下呈黄铜黄色, 多为他形粒状集合 体, 粒径为 0.05~0.21mm, 常与磁黄铁矿构成共边 结构,稀疏浸染状分布于脉石中。

石榴石: 主要的脉石矿物, 根据其结构特征可 分为两种, 一为中粗粒变晶石榴石, 粒径可达 2~3mm, 二为显微变晶状石榴石, 粒径多为 005~0.10mm, 全部为均质体。

透辉石: 主要的脉石矿物, 经显微镜观察, 可 分为两组产状态,其一产于石英质角岩中,呈他形 柱粒状, 粒径为 0.05~0.10mm, 沿变余层理定向分 布。其二产于石榴石、透辉石矽卡岩中、粒径为 0.1~0.5mm, 与石榴石伴生。

钾长石:脉石矿物,呈不规则,部分透辉石、 石榴石粒间或呈不规则脉状, 粒径达 0.1~0.5mm, 主要交代石榴石、透镜下呈褐黄色、表面多为黏土 矿物交代。

石英多为不规则粒状,常交代早期矿物或穿插 充填于其他矿物粒间, 粒径大小不一, 形态受空间 形态限制。

其它矿物有绿帘石、黝帘石、透闪石、斜长石 等,含量较少。

2 选矿试验研究

2.1 流程方案与工艺确定

试样化学分析结果表明, 矿石中有价元素是钨 和钼,由于试样含硫化矿物较少,利用辉钼矿的浮 游性明显优于其它硫化矿物的特点,试验采用先混 浮硫化矿, 硫化矿粗精矿再磨选钼, 再从硫化矿尾 矿中浮白钨矿的原则流程。为了加强浮选过程中白 钨矿与含钙脉石矿物的选择性浮选,确定采用石灰 法进行分选 [2]。即以石灰、碳酸钠作调整剂,水 玻璃作抑制剂,731氧化石蜡皂作捕收剂。

2.2 磨矿细度试验

试验是在实验室条件下进行,实验室型设备: XMQ240mm×90mm 锥型球磨机、XFD12 浮选机、 XFG II 50 挂槽浮选机和 XFGC-80 型充气挂槽浮选 机,除水玻璃为工业试剂外,其他浮选药剂均为 化学纯。试样经磨碎筛分混匀后装袋, 单元试样 重1000g。磨矿细度试验采用一次粗选、一次扫选 流程,磨矿细度-74µm 占80%,是由条件试验确 定的。

2.3 钼浮选试验

由化学多元素分析可知,该矿所含硫化矿有少 量的钼、铜和铅, 这些硫化矿的存在会对后面钨的 浮选造成一定的污染,因此需进行全浮脱硫试验。 辉钼矿粗选的捕收剂选用非极性油煤油, 调整剂为 水玻璃和碳酸钠, 试验采用一次粗选、两次扫选, 粗精矿两段磨矿再选的试验流程。其中钼精选对比 了水玻璃+硫化钠和 TGA 两种硫化矿抑制剂的效果 试验,结果发现 TGA 对硫化矿的抑制效果更好。 TGA 可以有效抑制选钼过程中的铜及硫, 是一种 新型的环保、安全的选矿药剂。钼精选试验表明, 使用硫化钠做精选抑制剂时,不仅用量较大,抑制 效果也明显不佳,而 TGA 用量很少,且抑制效果 很好, 仅为硫化钠用量的 1/10。同样条件下, 当水 玻璃+硫化钠是 140+500g/t 时, 钼粗精矿品位 8.35%, 当 TGA 用量为 10g/t 时, 钼粗精矿品位 15.94%, 提高了近一倍。钼精选6次后可获含钼 45.31%、回收率 65.78%的钼精矿。

2.4 白钨浮选试验

2.4.1 石灰用量试验

在白钨粗选中添加石灰, 除将 pH 值调高外, 石灰溶解产生的 Ca2吸附在方解石、萤石、石英等 脉石表面,添加碳酸钠调浆后即在这些脉石表面生 成CaCO3 沉淀,脉石从而被抑制,使白钨优先浮 出。石灰用量试验结果见表 4。

表 4 石灰用量试验结果

Table 4 The result of lime doses test

石灰用量	 钨精 矿			钨尾矿		
/(g•t ⁻¹)	产率	品位	回收率	产率	品位	回收率
100	2.76	6.92	75.71	95.92	0.046	17.49
300	2.16	8.67	75.80	90.57	0.045	17.58
500	1.69	11.63	74.03	96.85	0.053	19.33
700	1.04	15.36	63.61	97.66	0.077	29.94

添加脉石抑制剂石灰有明显选择性抑制脉石的 效果, 随着石灰用量的增加钨品位也随着增加, 当 石灰用量在 300~500g/t 时钨指标较好。

2.4.2 碳酸钠用量试验

白钨浮选的难题是白钨与可浮性相似的含钙矿 物的分离,正确选择调整剂和抑制剂是关键。在粗 选作业中,用碳酸钠作 pH 调整剂,水玻璃作脉石 抑制剂能使白钨矿得到一定程度的富集。

用碳酸钠作 pH 调整剂,除形成白钨矿易于上 浮的碱性介质,还能沉淀矿浆中 Ca2+、Mg2+和各种

%

重金属离子, 克服水中这些离子对浮选的不良影 响,在有水玻璃存在的条件下,当 pH 值为 7~10 时,方解石被较强烈地抑制,萤石也被较好地抑 制。因此,碳酸钠适用干含方解石较多的矽卡岩型 白钨矿的浮选 [3]。碳酸钠用量试验结果见表 5。

表 5 碳酸钠用量试验结果

Table 5 The result of Na ₂ CO ₃ doses test	%
--	---

碳酸钠用 量/(g・t ⁻¹)	钨精矿			钨尾矿		
	产率	品位	回收率	产率	品位	回收率
1000	3.78	4.50	66.19	93.73	0.072	26.25
1600	4.31	5.13	82.27	93.09	0.028	9.70
2000	4.37	5.07	83.61	93.14	0.024	8.50
2500	4.51	3.66	62.50	93.04	0.087	30.40

由试验结果可知、随着碳酸钠用量的增加、钨 精矿产率增加,品位和回收率先升高后降低,当碳 酸钠用量为 2000g/t 时钨指标达到最佳值, 随着用 量的增加指标则降低。

2.4.3 水玻璃用量试验

水玻璃是浮选白钨时最常用的分散剂和脉石抑 制剂, 水玻璃的分散和抑制作用, 通常认为是由于 亲水的 HSiO; 和水玻璃胶粒吸附在矿物表面使矿物 亲水而被抑制, 吸附了带负电水玻璃胶粒的矿石颗 粒互相排斥而起分散作用[4]。水玻璃用量试验结 果见表 6。

表 6 水玻璃用量试验结果

Table 6 The result of sodiu	ım silicate doses test 🧼 🦑
-----------------------------	----------------------------

	钨精矿			钨尾矿		
	产率	品位	回收率	产率	品位	回收率
500	5.38	4.05	81.89	92.77	0.032	11.15
700	4.22	5.18	82.49	93.91	0.028	10.10
1000	3.83	5.65	81.35	94.31	0.032	11.45
1500	2.52	6.26	59.31	95.95	0.096	34.38

由试验结果可知, 随着水玻璃用量的增加, 钨 精矿的品位也随着增加,在达到 1500g/t 时, 钨精 , 矿回收率降低比较明显,因此水玻璃用量在 700g/t 时指标较好。

2.4.4 捕收剂 731 试验

目前我国白钨矿浮选采用的捕收剂大都以 731 氧化石蜡皂为主。一般认为碳酸钠与水玻璃共用 时存在着协同效应,通过控制矿浆 pH 值使矿浆中 的HSiO3-保持在一个有利于强化抑制的浓度范围, 并配以选择性较强的 731 氧化石蜡皂作白钨矿的 捕收剂来达到较高的粗选富集比。通过试验研究 可知,731 用量在700g/t 时白钨浮选的指标达到 最佳值。

2.4.5 白钨精选试验

对白钨粗精矿进行常温精选和加温精选的试验 表明, 对该矿石来说, 常温精洗可获得钨回收率高 的合格精矿。在其他条件不变的条件下,加温精选 后的钨精矿品位为71.60%,精选段作业回收率为 46.23%。常温浮选后的钨精矿品位为 69.58%、精 选段作业回收率为54.63%,通过比较我们选择常 **温精洗**。

白钨常温精选是在添加适当的水玻璃条件下, 长时间(大于 30min) 充分地搅拌后, 使脉石矿物 表面吸附的捕收剂解析下来被抑制,而白钨仍具有 可浮性。该法兔去了浓浆高温的诸多不便,同时也 节约了选矿成本。

2.4.6 试验流程

通过以上条件试验,对硫化矿采用一次粗选、 两次扫选、六次精选,对白钨矿采用一次粗选、两 次扫选、五次精选的浮选常温开路试验流程, 试验 结果见表7。

表 7 常温开路流程试验结果

Table 7 The result of open-circuit test

产品名称		4	— <u>———</u> 钼	4	 钨		
	产率	品位	回收率	品位	回收率		
钼精矿	0.01	46.02	21.42	2.44	0.10		
中矿 1	0.01	26.23	12.21	2.82	0.11		
中矿 2	0.02	14.19	13.21	1.93	0.15		
中矿 3	0.03	3.09	4.32	1.46	0.17		
中矿 4	0.08	1.93	7.19	1.03	0.32		
中矿 5	0.12	0.77	4.30	1.62	0.76		
中矿 6	0.42	0.13	2.54	1.17	1.93		
中矿 7	0.23	0.28	3.00	1.49	1.35		
中矿 8	0.15	0.16	1.12	1.34	0.79		
钨精矿	0.20	0.51	4.75	69.58	54.63		
中矿 9	0.06	0.76	2.12	50.38	11.87		
中矿 10	0.05	0.56	1.30	29.22	5.74		
中矿 11	0.17	0.14	1.11	5.52	3.68		
中矿 12	0.24	0.011	0.12	0.39	0.37		
中矿 13	1.44	0.009	0.60	0.16	0.90		
中矿 14	2.10	0.024	2.35	1.07	8.82		
中矿 15	1.68	0.013	1.02	0.32	2.11		
尾矿	93.30	0.004	17.32	0.017	6.21		
原矿	100.0	0.0215	100.0	0.255	100.0		

常温开路流程试验可得钼精矿品位 46.02%、 回收率 21.42%的钼精矿,可得钨精矿品位 69.58%、回收率 54.63%的钨精矿。由于原矿含钼 较低,是造成钼回收率偏低的主要原因。

在开路流程试验基础上,进行了常温闭路流程 试验, 闭路流程见图 1, 试验指标见表 8。

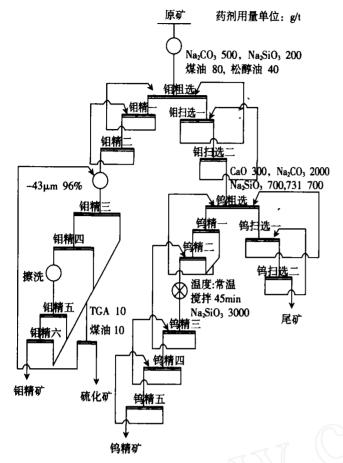


图 1 常温闭路试验流程

Fig. 1 Flowsheet of closed-circuit flotation test

3 结论

1)该矿主要回收的金属矿物为白钨矿、辉钼矿,另有少量的磁黄铁矿、黄铁矿、黄铜矿等,不具备回收的价值。原矿钨品位 0.26%,钼品位

表 8 常温闭路流程试验结果

Table 8	Res	ult of the	e closed-	circuit te	est %
产品名称	产率	†	钼		———— 舆
) 14	品位	回收率	品位	回收率
钼精矿	0.03	45.31	65.78	1.61	0.20
钨精矿	0.32	0.53	8.21	66.10	86.74
硫化矿	0.20	1.56	14.95	1.02	0.83
尾矿	99.45	0.0023	11.06	0.03	12.23
_原 矿	100.0	0.021	100.0	0.244	100.0

0.022%, 为矽卡岩型矿石。

- 2) 在白钨矿浮选前先浮硫化矿, 所得硫化粗精矿经两次再磨再选, 闭路试验得钼精矿品位45.31%、回收率65.78%的良好指标。
- 3) 试验采用石灰法浮选白钨矿,添加石灰能较好地抑制方解石、萤石等含钙脉石矿物。
- 4) 白钨常温浮选采用一次粗选、两次精选、两次扫选、粗精矿常温解析再精选的流程,闭路试验得钨精矿品位 66.10%、回收率 86.74%的良好指标。

参考文献

- [1] 叶雪均,刘军,刘智林₄某低品位白钨矿浮选试验研究[J]. 中国钨业,2006,(5): 20-23.
- [2]黄枢,肖金华.石灰浮选法在白钨精选中的应用[J]. 江西有色金属,1994,(1):19-23.
- [3] 谢光,吴威松.选矿手册(第八卷第二分册)[M]北京:冶金工业出版社,1990.
- [4] 朱一民.浮选白钨的几个问题[J].有色矿山,1999(2):31-34.

THE EXPERIMENTAL STUDY ON MINERAL PROCESSING ON ONE KIND OF LOW-GRADE WOLFRAM-MOLYBDENUM ORE

DU Shuhua, LIAO Li, HU Jinsong, WANG Yong (Institute of geological experiments, Hefei 230001, China)

ABSTRACT

Some low-grade wolfram-molybdenum ore contains WO_3 0.26% and molybdenum 0.022%. For the comprehensive recovery of wolfram and molybdenum, the experiment uses the process of sulfide firstly and next to scheelite ore flotation. The result of the locked test is: wolfram concentrate grade is 66.10%, the wolfram recovery rate 86.74%, molybdenum concentrate grade 45.31% and the molybdenum recovery rate 65.78%. So it shows the test has been performed well.

Key words: wolfram-molybdenum ore; flotation; comprehensive recovery; recovery rate