环冷机风箱结构对球团矿抗压强度影响之初探

朱辛州¹ 张旦¹ 宋文武²

(1. 首钢球团厂生产技术科 2. 首钢矿业公司技术处)

摘 要 根据首钢球团厂实际生产中出现的氧化球团抗压强度分布不均的情况,通过对 环冷机冷却风分布进行有限元分析,初步探讨了国内广泛采用的链-回-环球团工艺中环冷 机风箱结构对球团矿抗压强度的影响。

关键词 球团矿 抗压强度 环冷机 冷却风

1 前 言

首钢球团厂自 2000 年完成截窑改造转产 氧化球团以来,已生产了7年。作为链篦机-回转窑-环冷机球团工艺的先行者,经过7年 的探索和发展,我厂已从初期重视产量转而进 入了一个更注重产品质量的阶段。

2006年,首钢球团厂发现生产中存在同一 批次球团矿中成品球抗压强度差别较大的问题,平均抗压强度指标无法准确反映球团矿整 体强度。尔后,通过大量的取样分析,初步找出 问题的症结是在冷却环节,并从强化操作入手 进行解决,虽得到一定程度的改善,但未能从根 本上解决此问题。于是,从2007年7月开始,组 织对该问题进行了深入研究。通过有限元分析 研究了环冷机风箱中冷却风流速和风压的分 布,结果发现,现有环冷机风箱结构不合理,致 使球团矿冷却速度不一,造成了强度的差异。

我们希望这一现象能引起有关部门和单位 的重视,并提出使之完善的方法和措施,以促进 链篦机 - 回转窑球团工艺技术的进步和产品质 量的提高。

2 实际生产中遇到的难题

我厂在提高球团矿抗压强度的攻关中发现,同一批次的成品球,在物料品种、膨润土配

收稿日期:2008 - 11 - 24 联系人:张旦(064404) 河北迁安 首钢球团厂生产技术科

7

比、焙烧温度、焙烧时间、窑头球抗压强度等基 本一致的情况下,氧化球抗压强度分布范围非 常大。尽管采取了一系列操作措施,亦未能得 到有效改善。通过分析,初步认为是环冷机冷 却速度不均对成品球抗压强度造成的影响。

实验室研究也表明,冷却速度是决定球团 矿强度的重要因素。实验指出,经过1000 氧 化和1250 焙烧的磁铁矿球团矿,以5 /min (随炉冷却)~1000 /min(用水冷却)的不同 速度冷却到200 ,其结果是:冷却速度为70~ 80 /min时,球团强度最高^[1]。由此可见,球 团矿冷却速度对抗压强度影响非常之大。

为了找到提高球团矿抗压强度的方法,我 们首先对氧化球团抗压强度的分布进行了专门 研究。具体方法是:用自动取样机从成品皮带 取样,每15分钟取一次,两小时为一个检验单 元;筛取试样中10~16 mm的合格球,每个检验 单元每次随机取 60个球作为试样。试验时间 为十天,每天八小时(为4个检验单元),每个检 验单元随机做三次抗压强度试验,构成该单元 的三组数据;每组共有四十个检验数据。试验 结果如图1所示。

由图 1 可以看出,第一组平均抗压强度为 2388 N/个,氧化球抗压强度合格率(>2 250 N/ 个者为合格,下同)为 40 %;第二组平均抗压强 度为 2 164 N/个,抗压强度合格率为 35 %;第三 组平均抗压强度为 1 853 N/个,抗压强度合格 率为 20 %。

由数据可见,三组试验球的平均抗压强度

图 1 成品球抗压强度分布

随抗压强度合格率的降低而降低;此外,在抗压 强度合格率第二组比第三组高15%,第一组仅 比第二组高5%的情况下,平均抗压强度却是第 一组比第二组高224 N/个,第二组仅比第三组 高311 N/个。其原因是第一组、第三组抗压强 度分布范围比第二组小,三组球团抗压强度的 最大值与最小值之差分别为3200 N/个、 3600 N/个、1700 N/个。图1仅仅是一次试验 的数据,从实际生产情况来看,成品球抗压强度 的高低,直接受抗压强度合格率以及抗压强度 分布范围的影响。

为了研究产生上述现象的根源,我们又对 环冷机冷却情况进行了研究。具体试验方法 是,每天将环冷机分为上、中、下三层,每层再分 为内、外侧两点,共计6个点位,同时取样;从每 个点位所取样品中挑选60个粒度合格的球进 行抗压强度测试,计算每个点位成品球抗压强 度大于2250N/个的合格率,连续试验4天,结 果见图2。

球抗压等条件基本一致的情况下,环冷机台车

-7

同一截面上不同部位的氧化球抗压强度合格率 差异较大。环冷机内外环不同高度的氧化球抗 压强度合格率差异极大,高的如外环上部可达 55%,低的如外环下部仅为15%。

攻关期间,尽管采取了各种操作调控措施, 环冷机台车同一截面上不同部位的氧化球抗压 强度合格率差异仍然很大,此难题未得到有效 的解决。

3 风箱结构对成品球抗压强度影响的研究

为了探索环冷机及其配套风箱的结构对球 团矿抗压强度的影响,从2007年7月开始,我们 利用有限元分析方法对环冷机中冷却风的风流 状况进行了研究;并于2008年2月开始,连续三 个月对成品球的抗压强度分布进行测定,以检 验分析结果的可靠性。

3.1 风箱结构

环冷机风箱由上下两部分焊接而成,上部 是弧度为 21.5 的圆环台,圆环直径为 18 000 mm,圆环台宽 2 500 mm,高 1 025 mm;下部为 一四边形锥形台,锥形台顶面为圆环台的底面, 锥形台的底面为一边长 600 mm 的正方形,高为 1 600 mm。风管入口为一梯形管,上底边 1 800 mm,下底边 480 mm,高 1 048 mm;梯形管两底 边中线比锥形台顶面低 624 mm,梯形管为进气 管,圆环台上表面为出气面,详见图 3。图 3 中 标出的 4[#]白色区域是作为研究对象的风箱,其 中 2[#]区域为存冷却球团料层,1[#]区域为环冷机 烟罩,3[#]、4[#]区域为风箱。

为便于对重要的断面流速、静压图作分析, 现对 4[#] 白色区域风箱各部位作如下定义: 出 口面:为风箱与待冷却球团料层接触的顶面,即 圆环台上表面,详见图 4; y0 面:为风箱径向 中心的竖直截面,详见图 3 中 5[#]平面; z - 624 面:入口中线的水平截面(z = - 624),详见图 3 中 6[#]平面; 中径面:为风箱中径截面,环冷机 内、外环平分面与风箱的截面,详见图 4。

图 4 环冷机风箱网格右视图

3.2 冷却风流体分布计算的理论基础

本文采用 Launder Spalding (1974) 和 Rodi (1980) 建立的 *k*- 方程模型计算湍流轨迹。*k*-模型具有稳定性、经济性和比较高的精度,是应 用最广、最为人熟知的一个二方程湍流模型^[2]。 sandard *k*- 模型通过方程求解湍流脉动动能 (*k*)方程和湍流耗散率()方程。

需要说明的是, *k*- 方程只在湍流核心处才 是正确的,在近壁处则不适用。此时,需要采用 壁面函数,一般与壁面法向垂直方向采用速度 分布为对数规律,这样就可以将壁面区与核心 区联接起来,计算方法采用 Splading 和 Patankar 推荐的 SIMPER 计算方法^[3]。

计算过程中采用的有限元法是将一个连续 的求解域任意分成许多适当形状的微小单元, 并于各小单元分片构造插值函数,然后根据极 值原理,将问题的控制方程转化为所有单元上 的有限元方程,把总体的极值作为各单元极值 之和,即将局部单元总体合成,形成嵌入了指定 边界条件的代数方程组,求解该方程组就得到 各节点上待求的函数值。

7

3.3 冷却风流体分布计算结果

由于有限元计算方法需要将连续的求解域 任意分成许多适当形状的微小单元,计算前,首 先对风箱进行单元划分,共划分为 205658 个单 元,详见图 4。其中,上表面为风箱中冷却气体 出口。

根据我厂 2006 ~ 2007 年环冷机实际生产 使用风量对 13 个风箱平分,风箱入口流量取 26 849 m³/h,入口流速 6.24 m/s。以此为基础 计算风箱的静压和速度分布,并对比球团矿的 抗压强度分布,分析二者之间的关系。风箱中 的静压分布图详见图 5、图 6。(本文所有压力图 图例单位均为 Pa,速度图图例单位为 m/s)。

图 5 环冷机风箱 y0 面流体静压右视图

图 6 环冷机风箱出口面流体静压图

由静压分布图可以看出,冷却风流出风箱, 穿过台车进入料层前静压力由外环向内环逐渐 降低。比较明显的分布为四个区域:一是最外 环的高压区,即图6中的1[#]区域;二是中环部分 的中压区,即图6中的2[#]区域;三是内环部分除 两侧之外的常压区,即图6中的3[#]区域;四是内

环两侧部分的低压区,即图 6 中的 4[#]区域。 风箱中的速度分布见图 7、图 8。

图 8 环冷机风箱出口面流体速度顶视图

如图 7 所示,风箱出口速度大致可以分为 三部分:一是最外环的低速区,即图 7 中 1[#] 区 域;二是中环的高速区,图 7 中 2[#]、3[#] 区域;三 是内环的次高速区,图 7 中 4[#] 区域。同时,速度 分布图显示,在风箱底部进气管前方、外环部 分、以及内环进气管上方分别有一明显的低速 区。分析认为,这些低速区可能是由于风箱固 有结构造成气体回流形成涡流产生的。

图 8 显示,除了中环高速区速度分布较为 均匀外,内、外环的低速区、次高速区速度分布 就不太均匀。内环次高速区大致分为三部分: 两侧的两个低速区、中部高速区、中部靠近中环 部分的低速区;外环低速区大致分为五个部分: 中部以及两侧三个低速区,三个低速区间隔的 两个高速区。

由此可见,风箱出口面风速分布极不均匀, 各部分流量也就相应的不均匀,造成同一台车 上的氧化球团得不到均匀冷却,这也是上述试 验中,内外环氧化球团合格率相差很大的原因。 从风箱入口截面与 y0 面相交直线段 y0 入口线, 以及风箱入口截面与 z - 624 面相交直线段 z -624 入口线两处入流的流体在风箱中的轨迹线 分别见图 9、图 10。

图 9 y0 入口线流体在环冷机风箱中的轨迹线

12

图 10 z 624 入口线流体在环令机风箱中的轨迹线示意图

由入口面上 y = 0 处进入的气体在风箱中 的轨迹线如图 9 所示,图 9 中 a、b 分别为轨迹线 的左、右视图。两幅轨迹线图均清楚地显示,由 于风箱结构的原因,气体轨迹在风箱底部进气 管前方形成一漩涡状轨迹线(见进气管下方黑 灰相间的圆环轨迹线);在内环进气管上方也形 成了另一漩涡状轨迹线(见进气管上方灰色圆 环轨迹线);在进气管上边水平延长与外环相交 部位同样有一分流状轨迹线(见进气管上边水 平延长与外环相交部分黑色、灰色轨迹线相交 界面处)。由气体流线轨迹可以表明,图 7 中风 箱 y0 面流速分布中三个异常的低速区是正确 的,它们是由于风箱结构造成的涡流引起的。

由入口面上 z = - 624 处进入的气体在风箱 中的轨迹线如图 10 所示,图 10 中 a、b、c 分别为 轨迹线的右、顶、侧视图。三幅轨迹线图显示, 由入口面上 z = - 624 处进入的气体,进入风箱 后,一部分直接向前运行至外环风箱壁面后,向 下运行至风箱底部,并在风箱底部形成一漩涡 状轨迹线(见 a 右视图中风箱下方灰色圆状轨迹 线);另一部分进入分箱后竖直向上运行,在风 箱内环两侧部位形成两个较大的漩涡状轨迹 (见 b、c 图中,黑、灰色入流轨迹线两侧部位的螺 旋状轨迹线)。这两个较大漩涡,可以清楚地解 释图 6(出口静压分布图)中,内环两侧部分产生 低压区以及图 8(出口面流速分布图)中,内环两 侧形成两个低速区、中部产生高速区、中部靠近 中环部分形成低速区的原因。

综上所述,由于风箱结构的原因,冷却风进 入风箱后形成漩涡流,造成风箱静压、流速的不 均匀分布,特别是对流速影响尤为严重(详见图 8),造成同一台车同一截面上的球团矿冷却速 度大不一样。

3.4 对生产球抗压强度的验证

为了验证上述分析结果,我们以实际生产 中同一台车底部不同部位的氧化球为对象进行 抗压强度试验,通过抗压强度分布检验分析结 果的正确性。

试验方法:将环冷机台车下层(详细位置如 图 3 中的 BC 段)由内环起、外环止,用 4 段等长 直线均分为 5 个点,由内至外编号 1 至 5,每天 对 5 个点位同时取样;从每个点位所取样品中 挑选 60 个粒度合格的球进行抗压强度测试,统 计每个点位成品球抗压强度的分布。为了确保 检验数据的准确,每天做一次,连续试验 3 个 月,以 3 个月的试验数据为基础进行分析。

在试验期间,同步检验、分析窑头球抗压强

度分布,如图 11。由图可以看出,窑头球 96.5% 集中在 1 500~2 500 N/个之间,整体分布较为 均匀稳定。然而,经环冷机冷却后,球团抗压强 度分布范围急剧增大。从图 12 可见,在台车同 一断面上抗压强度分布最稳定的部位为第 2 点,也仅有 55%的球抗压强度集中在 1 000 N 范围内,较窑头球的比例下降了 41.5%。由于 比较是以台车上最好点位为对象,所以实际成 品球抗压强度分布集中在 1 000 N 范围内的比 例会比窑头球下降更大。这就排除了试验期 间,因干燥、预热、焙烧等工序控制造成窑头球 抗压强度分布不稳定,影响成品球抗压强度分 布的可能性。

图 11 窑头球抗压强度分布

图 12 台车同一截面不同部位球的抗压强度分布

7

由图 12 可见,内环球抗压强度相对均匀, 抗压强度分布较为集中;外环球抗压强度差别 较大,抗压强度分布较为分散。对比图 11 可 知,窑头球 96.5%集中在 1 500~2 500 N/个之 间,抗压分布较为集中,而成品球抗压强度分布 较为分散。

分析原因,是由于风箱的固有结构,使进入 的冷却风流速分布在环冷机台车中线至内环壁 部分较台车中线至外环壁部分更为均匀(见图 8),因此氧化球冷却速度也较为均匀。故内环 部分球团抗压强度相对比较集中,如内壁处球 团抗压强度 80%集中在 2 000~3 000 N/个、 3 000~4 000 N/个两个区间,环冷机台车中线 与内环壁中点处球团抗压强度分布更为集中, 56%集中在3 000~4 000 N/个区间内。

4 结 论

现有环冷机风箱结构容易产生涡流,造成 风箱出口面流速、静压分布不均匀,部分区域跨 度密而大,影响环冷机中球团矿的均匀冷却。 不均匀的冷却速度使得抗压强度基本一致的窑 头球,经冷却后得到的成品球抗压强度分布范 围非常大,且不均匀,个体之间差别极大,对球 团矿整体强度造成不利影响,制约了球团矿质 量的稳定与提高。

参考文献

- 1 张一敏. 球团理论与工艺. 北京:冶金工业出版社,2004.126
- 2 吴德铭,部冶.实用计算流体力学.哈尔滨:哈尔滨工程大 学出版社,2006.313~315
- 3 苏铭德,黄素逸.计算流体力学基础.北京:清华大学出版 社,1997.349~360

On the Influence of Wind Box Structure of Circular Cooler on Pellets Compression Strength

Zhu Xinzhou et al.

Abstract Pointed at the phenomenon of non-uniformity distribution of pelltes compression strength presented in SHOUGANG, the wind distribution in circular cooler was finite element analysed. Through this analysis, the influence of wind box structure of circular cooler on pellet compression strength was discussed.

Keywords pellet , compression strength , circular cooler , cooling wind